The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1.

نویسندگان

  • Soo-Hyun Yang
  • Ruobo Zhou
  • Judith Campbell
  • Junjie Chen
  • Taekjip Ha
  • Tanya T Paull
چکیده

The human SSB homologue 1 (hSSB1) has been shown to facilitate homologous recombination and double-strand break signalling in human cells. Here, we compare the DNA-binding properties of the SOSS1 complex, containing SSB1, with Replication Protein A (RPA), the primary single-strand DNA (ssDNA) binding complex in eukaryotes. Ensemble and single-molecule approaches show that SOSS1 binds ssDNA with lower affinity compared to RPA, and exhibits less stable interactions with DNA substrates. Nevertheless, the SOSS1 complex is uniquely capable of promoting interaction of human Exo1 with double-strand DNA ends and stimulates its activity independently of the MRN complex in vitro. Both MRN and SOSS1 also act to mitigate the inhibitory action of the Ku70/80 heterodimer on Exo1 activity in vitro. These results may explain why SOSS complexes do not localize with RPA to replication sites in human cells, yet have a strong effect on double-strand break resection and homologous recombination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins.

Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imag...

متن کامل

Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection.

Homologous recombination is a major pathway for repair of DNA double-strand breaks. This repair process is initiated by resection of the 5′-terminated strand at the break site. In yeast, resection is carried out by three nucleolytic complexes: Mre11-Rad50-Xrs2, which functions at the initial step and also stimulates the two processive pathways, Sgs1-Dna2 and Exonuclease 1 (Exo1). Here we invest...

متن کامل

DNA PK JBC 110713 final

The resection of DNA double strand breaks (DSBs) initiates homologous recombination (HR) and is critical for genomic stability. Using direct measurement of resection in human cells and reconstituted assays of resection with purified proteins in vitro, we show that DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a classic non-homologous end joining (NHEJ) factor, antagonizes DSB resec...

متن کامل

PCNA promotes processive DNA end resection by Exo1

Exo1-mediated resection of DNA double-strand break ends generates 3' single-stranded DNA overhangs required for homology-based DNA repair and activation of the ATR-dependent checkpoint. Despite its critical importance in inducing the overall DNA damage response, the mechanisms and regulation of the Exo1 resection pathway remain incompletely understood. Here, we identify the ring-shaped DNA clam...

متن کامل

Quantitation of DNA double-strand break resection intermediates in human cells

5' strand resection at DNA double strand breaks (DSBs) is critical for homologous recombination (HR) and genomic stability. Here we develop a novel method to quantitatively measure single-stranded DNA intermediates in human cells and find that the 5' strand at endonuclease-generated break sites is resected up to 3.5 kb in a cell cycle-dependent manner. Depletion of CtIP, Mre11, Exo1 or SOSS1 bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2013